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MOTIVATION

The Problem: Verilog lacks the expressivity and modularity of software programming 

languages, due to a lack of features such as: 

• Strong type system 

• Recursion 

• Pattern-matching 

• …and more



MOTIVATION

I spent the last year answering the following questions:



MOTIVATION

I spent the last year answering the following questions: 

Question 1 

Can I design a programming language that combines the powerful features of software 

programming languages with the ability to describe electronic circuits?
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I spent the last year answering the following questions: 

Question 1 

Can I design a programming language that combines the powerful features of software 

programming languages with the ability to describe electronic circuits?

Question 2 

Can I develop a compiler that accepts a program in this language and produces an optimized 

Verilog module?
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PRELIMINARY RESEARCH

Possessed some prior knowledge through coursework 
• ECE 350 (Digital Systems) 

• ECE 553 (Compiler Construction) 

Did not know enough about type theory to design a powerful language



Read the entirety of ‘Types and Programming Languages’ by Benjamin Pierce, a 

textbook used in graduate-level type-theory seminars 

Provided me with the theoretical tools I needed

PRELIMINARY RESEARCH
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Other languages exist that attempt to do the same thing 

Haskell for Hardware (only software programmers can understand) 

Lava (not high-level enough) 

PRELIMINARY RESEARCH

Gemini needs to be accessible to both parties 
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Complete documentation with examples can be found at bit.ly/gemini-docs

LANGUAGE SPECIFICATION

http://bit.ly/gemini-docs
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What is a type?

A classification of a value (int, string, etc.)

What is a kind?

A classification of a type; “the type of types”
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∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

int !-> string

listint

∗ ⇒ ∗

int !->
!->

In conventional programming languages… 

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)
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In Gemini… 

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

bit !~> bit
bit !~> bit !~> bit

bit list

string ref
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In Gemini… 

Three atomic kinds S, H, and M and the constructor ⇒

Modeling time as a type



DESIGN // KINDING SYSTEM

In Gemini… 

Three atomic kinds S, H, and M and the constructor ⇒

Value-parameterized types
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hypothesis

conclusion

Each typing rule is a theorem

(T-NAME)
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Operational semantics define an abstract state machine

exp exp’

val terminal

f ( ) = 

f ( ) = 
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Operational semantics can be further partitioned

1. Structural (small-step) 

2. Natural (big-step)



DESIGN // EVALUATION RULES

Each evaluation rule is a theorem

hypothesis

conclusion
(E-NAME)
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Examples of evaluation rules

97 rules in total, shown in full in Appendix B
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Theorem of Progress 

Suppose t is a closed, well-typed term (⊢ t : T for some T). Then either t is a value or 

else there is some t’ with t ⟶ t’.

We first prove two supporting theorems

Theorem of Preservation 

If t : R and t ⟶ t’, then t’ : R.
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Proof by structural induction

Shown in full in Appendix B
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Definition 

A term is in a stuck state if no evaluation rules apply to it but it is not a value. 

Theorem of Safety 

A well-typed term can never reach a stuck state during evaluation.



DESIGN // PROOF OF SAFETY

Proof: Progress tells us a well-typed term can either always take a step of evaluation or it 

is already a value. Preservation tells us if a well-typed term takes a step of evaluation, the 

resulting term is also well-typed. In combination and inductively, these guarantee safety.

Definition 

A term is in a stuck state if no evaluation rules apply to it but it is not a value. 

Theorem of Safety 

A well-typed term can never reach a stuck state during evaluation.
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Scans program and produces lexemes, classified into token classes

let
fun greet x = String.concat([ , x])

in
print(greet

end
)

“ ”Hello

“ ”World



Hello  

IMPLEMENTATION // LEXER

Scans program and produces lexemes, classified into token classes

let fun greet x = String . concat ( [

, x ] )in print ( greet end)

“ ”

“ ”World

id id id id

id idid

string

string
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At this point, we know program is syntactically correct

Problem 

It may not be grammatically correct (Ex: 42 +)

Solution 

We must verify the grammar

+

2 *

5 10

2 + 5 * 10
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At this point, we know program is syntactically and grammatically correct

Problem 

It may not be semantically correct (Ex: “hello” + 42)

Solution 

We must verify the type semantics
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Preventative Issue 

Not all types are currently known since variables may be written with implicit types

fun add(x, y) = x + y

It is the responsibility of the compiler to infer the actual types
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We translate from Gemini to a fictional intermediate language called ExplicitGemini

fun print_and_mult(x :’a, y :’b, s : string) :’c = (print(s); x * y)

‘a represents a type variable, which we try to infer based on how it is used
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With all variables decorated, we infer all types as generally as possible

Two underlying algorithms 

1. Unification 

2. Substitution
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Algorithm: Unification computes the smallest possible substitution mapping from type 

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of 

                                         [] : ‘c !=> [] : ‘d 

                                      |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list} {‘a ↦ int list}

{‘b ↦ int list}

doubleList : int list !-> int list
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Algorithm: Substitution applies the mappings to the variable and type environments
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In some cases, type variables do not get substituted

fun concat e mylist = e!::mylist

The type of concat is ‘a !-> ‘a list !-> ‘a list

In type theoretical terms, ∀a.λx : a.λy : a list.x::y
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Now that all types are inferred, we can enforce typing rules that we formalized earlier
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At this point, we have a well-typed AST consisting of software and hardware expressions

Problem 

Verilog only supports hardware values

Solution 

Execute all software expressions to generate a hardware-only tree



IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past



IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1.   We recurse over the AST and evaluate each expression, which may contain subexpressions



IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1.   We recurse over the AST and evaluate each expression, which may contain subexpressions

2.   Base case of recursion is when a variable or constant is encountered



IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1.   We recurse over the AST and evaluate each expression, which may contain subexpressions

2.   Base case of recursion is when a variable or constant is encountered

3.   At each node, subexpressions are evaluated and used to evaluate the node itself



IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1.   We recurse over the AST and evaluate each expression, which may contain subexpressions

2.   Base case of recursion is when a variable or constant is encountered

3.   At each node, subexpressions are evaluated and used to evaluate the node itself

4.   For each declaration, the value store is augmented to map from the variable name to its value
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At this point, we have a tree of hardware values representing a circuit consisting only of 

bits, gates, arrays, records, and pins (variables)

Problem 

The structure represents a module but is not in an executable format

Solution 

We must output Verilog that represents the tree
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Verilog production is similar to algorithms in the past

1.   We recurse over the AST and produce Verilog for each expression, which may contain subexpressions

2.   Base case of recursion is when a pin or constant is encountered

3.   At each node, subexpressions are evaluated and used to evaluate the node itself

4.   For each node, fresh wire is generated and returned for superexpressions to use
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FUTURE WORK

Extensions Optimizations

• Dataflow analysis to reuse wires 

• Constant propagation 

• Constraining resources finitely

• Simulation/waveform backend 

• Testbench generation



FUTURE WORK

Plan to Open-Source 

All code is hosted on GitHub 

Extensive documentation at bit.ly/gemini-docs

http://bit.ly/gemini-docs
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CONCLUSION

I spent the last year answering the following questions: 

Question 1 

Can I design a programming language that combines the powerful features of software 

programming languages with the ability to describe electronic circuits?

Question 2 

Can I develop a compiler that accepts a program in this language and produces an optimized 

Verilog module?

Answer 

Yes, and Gemini is proof that unconventional features like multiple kinds, value-parameterized 

types, and the manifestation of time are possible to implement.
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