
Gemini
Designing and Implementing a Functional

Hardware Description Language

Aditya SRINIVASAN Drew HILTON

Thesis Defense

APRIL 25, 2018

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

MOTIVATION

The Problem: Verilog lacks the expressivity and modularity of software programming

languages, due to a lack of features such as:

• Strong type system

• Recursion

• Pattern-matching

• …and more

MOTIVATION

I spent the last year answering the following questions:

MOTIVATION

I spent the last year answering the following questions:

Question 1

Can I design a programming language that combines the powerful features of software

programming languages with the ability to describe electronic circuits?

MOTIVATION

I spent the last year answering the following questions:

Question 1

Can I design a programming language that combines the powerful features of software

programming languages with the ability to describe electronic circuits?

Question 2

Can I develop a compiler that accepts a program in this language and produces an optimized

Verilog module?

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

PRELIMINARY RESEARCH

Possessed some prior knowledge through coursework
• ECE 350 (Digital Systems)

• ECE 553 (Compiler Construction)

Did not know enough about type theory to design a powerful language

Read the entirety of ‘Types and Programming Languages’ by Benjamin Pierce, a

textbook used in graduate-level type-theory seminars

Provided me with the theoretical tools I needed

PRELIMINARY RESEARCH

Other languages exist that attempt to do the same thing

Haskell for Hardware (only software programmers can understand)

Lava (not high-level enough)

PRELIMINARY RESEARCH

Other languages exist that attempt to do the same thing

Haskell for Hardware (only software programmers can understand)

Lava (not high-level enough)

PRELIMINARY RESEARCH

Gemini needs to be accessible to both parties

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

Complete documentation with examples can be found at bit.ly/gemini-docs

LANGUAGE SPECIFICATION

http://bit.ly/gemini-docs

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

DESIGN

1. Kinding System

2. Grammar

3. Typing Relation

4. Evaluation Rules

5. Proof of Safety

DESIGN

1. Kinding System

2. Grammar

3. Typing Relation

4. Evaluation Rules

5. Proof of Safety

DESIGN // KINDING SYSTEM

What is a type?

DESIGN // KINDING SYSTEM

What is a type?

A classification of a value (int, string, etc.)

DESIGN // KINDING SYSTEM

What is a type?

A classification of a value (int, string, etc.)

What is a kind?

DESIGN // KINDING SYSTEM

What is a type?

A classification of a value (int, string, etc.)

What is a kind?

A classification of a type; “the type of types”

DESIGN // KINDING SYSTEM

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ⇒ ∗∗ ⇒ ∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

∗ ∗ ⇒ ∗ ⇒ ∗

int

string

∗ ⇒ ∗

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

∗ ⇒ ∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

list
∗ ⇒ ∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

list
∗ ⇒ ∗

int

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

list
∗

int

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list
listint

∗ ⇒ ∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

!->

listint

∗ ⇒ ∗

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

int !->

listint

∗ ⇒ ∗

!->

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

∗ ∗ ⇒ ∗ ⇒ ∗

int

string

list

int !-> string

listint

∗ ⇒ ∗

int !->
!->

In conventional programming languages…

Single atomic kind ∗ (“type”) and the constructor ⇒ (“to”)

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S

int

string

real

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref

H ⇒ S

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref

H ⇒ S

sw

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

H ⇒ S

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ S

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

H ⇒ S

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

bit !~> bit

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

bit !~> bit
bit !~> bit !~> bit

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

bit !~> bit
bit !~> bit !~> bit

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

bit !~> bit
bit !~> bit !~> bit

bit list

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

S S ⇒ S

int

string

real

list

ref
sw

H

bit

H ⇒ H ⇒ M

!~>

H ⇒ S

M

bit !~> bit
bit !~> bit !~> bit

bit list

string ref

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

Modeling time as a type

DESIGN // KINDING SYSTEM

In Gemini…

Three atomic kinds S, H, and M and the constructor ⇒

Value-parameterized types

DESIGN

1. Kinding System

2. Grammar

3. Typing Relation

4. Evaluation Rules

5. Proof of Safety

DESIGN // GRAMMAR

DESIGN // GRAMMAR

Shown in full in Appendix B

DESIGN // GRAMMAR

DESIGN // GRAMMAR

Shown in full in Appendix B

DESIGN

1. Kinding System

2. Grammar

3. Typing Relation

4. Evaluation Rules

5. Proof of Safety

DESIGN // TYPING RELATION

Each typing rule is a theorem

DESIGN // TYPING RELATION

hypothesis

conclusion

Each typing rule is a theorem

(T-NAME)

DESIGN // TYPING RELATION

Examples of typing rules

DESIGN // TYPING RELATION

Examples of typing rules

DESIGN // TYPING RELATION

Examples of typing rules

51 rules in total, shown in full in Appendix B

DESIGN

1. Kinding System

2. Grammar

3. Typing Relation

4. Evaluation Rules

5. Proof of Safety

DESIGN // EVALUATION RULES

Defining the semantics of the language

DESIGN // EVALUATION RULES

Defining the semantics of the language

1. Operational semantics

2. Denotational semantics

3. Axiomatic semantics

DESIGN // EVALUATION RULES

Defining the semantics of the language

1. Operational semantics

2. Denotational semantics

3. Axiomatic semantics

DESIGN // EVALUATION RULES

Operational semantics define an abstract state machine

DESIGN // EVALUATION RULES

Operational semantics define an abstract state machine

exp exp’f () =

DESIGN // EVALUATION RULES

Operational semantics define an abstract state machine

exp exp’

val terminal

f () =

f () =

DESIGN // EVALUATION RULES

Operational semantics can be further partitioned

1. Structural (small-step)

2. Natural (big-step)

DESIGN // EVALUATION RULES

Operational semantics can be further partitioned

1. Structural (small-step)

2. Natural (big-step)

DESIGN // EVALUATION RULES

Each evaluation rule is a theorem

hypothesis

conclusion
(E-NAME)

DESIGN // EVALUATION RULES

Examples of evaluation rules

DESIGN // EVALUATION RULES

Examples of evaluation rules

DESIGN // EVALUATION RULES

Examples of evaluation rules

97 rules in total, shown in full in Appendix B

DESIGN

1. Kinding System

2. Grammar

3. Typing Relation

4. Evaluation Rules

5. Proof of Safety

DESIGN // PROOF OF SAFETY

We first prove two supporting theorems

DESIGN // PROOF OF SAFETY

Theorem of Progress

Suppose t is a closed, well-typed term (⊢ t : T for some T). Then either t is a value or

else there is some t’ with t ⟶ t’.

We first prove two supporting theorems

DESIGN // PROOF OF SAFETY

Theorem of Progress

Suppose t is a closed, well-typed term (⊢ t : T for some T). Then either t is a value or

else there is some t’ with t ⟶ t’.

We first prove two supporting theorems

Theorem of Preservation

If t : R and t ⟶ t’, then t’ : R.

DESIGN // PROOF OF SAFETY

Proof by structural induction

DESIGN // PROOF OF SAFETY

Proof by structural induction

Shown in full in Appendix B

DESIGN // PROOF OF SAFETY

Definition

A term is in a stuck state if no evaluation rules apply to it but it is not a value.

DESIGN // PROOF OF SAFETY

Definition

A term is in a stuck state if no evaluation rules apply to it but it is not a value.

Theorem of Safety

A well-typed term can never reach a stuck state during evaluation.

DESIGN // PROOF OF SAFETY

Proof: Progress tells us a well-typed term can either always take a step of evaluation or it

is already a value. Preservation tells us if a well-typed term takes a step of evaluation, the

resulting term is also well-typed. In combination and inductively, these guarantee safety.

Definition

A term is in a stuck state if no evaluation rules apply to it but it is not a value.

Theorem of Safety

A well-typed term can never reach a stuck state during evaluation.

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini Compiler

Gemini
Program

Verilog
Module

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

IMPLEMENTATION // LEXER

Scans program and produces lexemes, classified into token classes

IMPLEMENTATION // LEXER

Scans program and produces lexemes, classified into token classes

let
fun greet x = String.concat([, x])

in
print(greet

end
)

“ ”Hello

“ ”World

Hello

IMPLEMENTATION // LEXER

Scans program and produces lexemes, classified into token classes

let fun greet x = String . concat ([

, x])in print (greet end)

“ ”

“ ”World

id id id id

id idid

string

string

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens

IMPLEMENTATION // PARSER

At this point, we know program is syntactically correct

IMPLEMENTATION // PARSER

At this point, we know program is syntactically correct

Problem

It may not be grammatically correct (Ex: 42 +)

IMPLEMENTATION // PARSER

At this point, we know program is syntactically correct

Problem

It may not be grammatically correct (Ex: 42 +)

Solution

We must verify the grammar

IMPLEMENTATION // PARSER

At this point, we know program is syntactically correct

Problem

It may not be grammatically correct (Ex: 42 +)

Solution

We must verify the grammar

+

2 *

5 10

2 + 5 * 10

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens AST

IMPLEMENTATION // SEMANTIC ANALYSIS

At this point, we know program is syntactically and grammatically correct

IMPLEMENTATION // SEMANTIC ANALYSIS

At this point, we know program is syntactically and grammatically correct

Problem

It may not be semantically correct (Ex: “hello” + 42)

IMPLEMENTATION // SEMANTIC ANALYSIS

At this point, we know program is syntactically and grammatically correct

Problem

It may not be semantically correct (Ex: “hello” + 42)

Solution

We must verify the type semantics

IMPLEMENTATION // SEMANTIC ANALYSIS

Preventative Issue

Not all types are currently known since variables may be written with implicit types

IMPLEMENTATION // SEMANTIC ANALYSIS

Preventative Issue

Not all types are currently known since variables may be written with implicit types

fun add(x, y) = x + y

IMPLEMENTATION // SEMANTIC ANALYSIS

Preventative Issue

Not all types are currently known since variables may be written with implicit types

fun add(x, y) = x + y

It is the responsibility of the compiler to infer the actual types

IMPLEMENTATION // SEMANTIC ANALYSIS

1. Decoration

2. Inference

3. Checking

IMPLEMENTATION // SEMANTIC ANALYSIS

1. Decoration

2. Inference

3. Checking

IMPLEMENTATION // SEMANTIC ANALYSIS // DECORATION

We translate from Gemini to a fictional intermediate language called ExplicitGemini

IMPLEMENTATION // SEMANTIC ANALYSIS // DECORATION

We translate from Gemini to a fictional intermediate language called ExplicitGemini

fun print_and_mult(x :’a, y :’b, s : string) :’c = (print(s); x * y)

IMPLEMENTATION // SEMANTIC ANALYSIS // DECORATION

We translate from Gemini to a fictional intermediate language called ExplicitGemini

fun print_and_mult(x :’a, y :’b, s : string) :’c = (print(s); x * y)

IMPLEMENTATION // SEMANTIC ANALYSIS // DECORATION

We translate from Gemini to a fictional intermediate language called ExplicitGemini

fun print_and_mult(x :’a, y :’b, s : string) :’c = (print(s); x * y)

‘a represents a type variable, which we try to infer based on how it is used

IMPLEMENTATION // SEMANTIC ANALYSIS

1. Decoration

2. Inference

3. Checking

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

With all variables decorated, we infer all types as generally as possible

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

With all variables decorated, we infer all types as generally as possible

Two underlying algorithms

1. Unification

2. Substitution

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘d ↦ ‘i list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘d ↦ ‘i list}

{‘e ↦ int}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘d ↦ ‘i list}

{‘e ↦ int}

{‘f ↦ ‘e list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘d ↦ ‘i list}

{‘e ↦ int}

{‘f ↦ int list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘d ↦ ‘i list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ ‘e list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘d ↦ ‘i list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ ‘g}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ ‘h list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list} {‘a ↦ ‘c}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list} {‘a ↦ int list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list} {‘a ↦ int list}

{‘b ↦ ‘d}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list} {‘a ↦ int list}

{‘b ↦ int list}

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Unification computes the smallest possible substitution mapping from type

variables to types

fun doubleList (mylist : ‘a) : ‘b = case mylist of

 [] : ‘c !=> [] : ‘d

 |: (x : ‘e)!::(rest : ‘f) !=> (x * 2)!::(doubleList rest) : ‘g

{‘c ↦ int list}

{‘e ↦ int}

{‘f ↦ int list}

{‘g ↦ int list}

{‘d ↦ int list} {‘a ↦ int list}

{‘b ↦ int list}

doubleList : int list !-> int list

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

Algorithm: Substitution applies the mappings to the variable and type environments

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

In some cases, type variables do not get substituted

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

In some cases, type variables do not get substituted

fun concat e mylist = e!::mylist

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

In some cases, type variables do not get substituted

fun concat e mylist = e!::mylist

The type of concat is ‘a !-> ‘a list !-> ‘a list

IMPLEMENTATION // SEMANTIC ANALYSIS // INFERENCE

In some cases, type variables do not get substituted

fun concat e mylist = e!::mylist

The type of concat is ‘a !-> ‘a list !-> ‘a list

In type theoretical terms, ∀a.λx : a.λy : a list.x::y

IMPLEMENTATION // SEMANTIC ANALYSIS

1. Decoration

2. Inference

3. Checking

IMPLEMENTATION // SEMANTIC ANALYSIS // CHECKING

Now that all types are inferred, we can enforce typing rules that we formalized earlier

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens AST

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens AST

well-typed
explicit
AST

IMPLEMENTATION // EVALUATION

At this point, we have a well-typed AST consisting of software and hardware expressions

IMPLEMENTATION // EVALUATION

At this point, we have a well-typed AST consisting of software and hardware expressions

Problem

Verilog only supports hardware values

IMPLEMENTATION // EVALUATION

At this point, we have a well-typed AST consisting of software and hardware expressions

Problem

Verilog only supports hardware values

Solution

Execute all software expressions to generate a hardware-only tree

IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1. We recurse over the AST and evaluate each expression, which may contain subexpressions

IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1. We recurse over the AST and evaluate each expression, which may contain subexpressions

2. Base case of recursion is when a variable or constant is encountered

IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1. We recurse over the AST and evaluate each expression, which may contain subexpressions

2. Base case of recursion is when a variable or constant is encountered

3. At each node, subexpressions are evaluated and used to evaluate the node itself

IMPLEMENTATION // EVALUATION

Evaluation is similar to algorithms in the past

1. We recurse over the AST and evaluate each expression, which may contain subexpressions

2. Base case of recursion is when a variable or constant is encountered

3. At each node, subexpressions are evaluated and used to evaluate the node itself

4. For each declaration, the value store is augmented to map from the variable name to its value

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens AST

well-typed
explicit
AST

IMPLEMENTATION

LEXER PARSER
SEMANTIC
ANALYSIS

EVALUATION
VERILOG

PRODUCTION

DECORATION INFERENCE CHECKING

Gemini
Program

Verilog
Module

tokens AST

well-typed
explicit
AST

HW
tree

IMPLEMENTATION // VERILOG PRODUCTION

At this point, we have a tree of hardware values representing a circuit consisting only of

bits, gates, arrays, records, and pins (variables)

IMPLEMENTATION // VERILOG PRODUCTION

At this point, we have a tree of hardware values representing a circuit consisting only of

bits, gates, arrays, records, and pins (variables)

Problem

The structure represents a module but is not in an executable format

IMPLEMENTATION // VERILOG PRODUCTION

At this point, we have a tree of hardware values representing a circuit consisting only of

bits, gates, arrays, records, and pins (variables)

Problem

The structure represents a module but is not in an executable format

Solution

We must output Verilog that represents the tree

IMPLEMENTATION // VERILOG PRODUCTION

Verilog production is similar to algorithms in the past

1. We recurse over the AST and produce Verilog for each expression, which may contain subexpressions

IMPLEMENTATION // VERILOG PRODUCTION

Verilog production is similar to algorithms in the past

1. We recurse over the AST and produce Verilog for each expression, which may contain subexpressions

2. Base case of recursion is when a pin or constant is encountered

IMPLEMENTATION // VERILOG PRODUCTION

Verilog production is similar to algorithms in the past

1. We recurse over the AST and produce Verilog for each expression, which may contain subexpressions

2. Base case of recursion is when a pin or constant is encountered

3. At each node, subexpressions are evaluated and used to evaluate the node itself

IMPLEMENTATION // VERILOG PRODUCTION

Verilog production is similar to algorithms in the past

1. We recurse over the AST and produce Verilog for each expression, which may contain subexpressions

2. Base case of recursion is when a pin or constant is encountered

3. At each node, subexpressions are evaluated and used to evaluate the node itself

4. For each node, fresh wire is generated and returned for superexpressions to use

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

FUTURE WORK

Extensions Optimizations

FUTURE WORK

Extensions Optimizations

• Simulation/waveform backend

• Testbench generation

FUTURE WORK

Extensions Optimizations

• Dataflow analysis to reuse wires

• Constant propagation

• Constraining resources finitely

• Simulation/waveform backend

• Testbench generation

FUTURE WORK

Plan to Open-Source

All code is hosted on GitHub

Extensive documentation at bit.ly/gemini-docs

http://bit.ly/gemini-docs

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

ROADMAP

1 2 3 4

5 6 7 8

Motivation Preliminary
Research

Language
Specification

Design

Implementation Demonstration Future Work Conclusion

CONCLUSION

I spent the last year answering the following questions:

Question 1

Can I design a programming language that combines the powerful features of software

programming languages with the ability to describe electronic circuits?

Question 2

Can I develop a compiler that accepts a program in this language and produces an optimized

Verilog module?

CONCLUSION

I spent the last year answering the following questions:

Question 1

Can I design a programming language that combines the powerful features of software

programming languages with the ability to describe electronic circuits?

Question 2

Can I develop a compiler that accepts a program in this language and produces an optimized

Verilog module?

CONCLUSION

I spent the last year answering the following questions:

Question 1

Can I design a programming language that combines the powerful features of software

programming languages with the ability to describe electronic circuits?

Question 2

Can I develop a compiler that accepts a program in this language and produces an optimized

Verilog module?

Answer

Yes, and Gemini is proof that unconventional features like multiple kinds, value-parameterized

types, and the manifestation of time are possible to implement.

REFERENCES

[1] Barbacci, M. ”A comparison of register transfer languages for describing computers and digital systems,”
Carnegie-Mellon Univ., Dept. of Computer Science, March 1973  

[2] ”Verilog’s inventor nabs EDA’s Kaufman award”. EE Times. November 7, 2005  

[3] Department of Defense (1992). Military Standard, Standard general requirements for electronic equipment.
Retrieved November 15, 2017  

[4] Barbacci, M., Grout S., Lindstrom, G., Maloney, M.P. ”Ada as a hardware description language : an initial
report,” Carnegie-Mellon Univ., Dept. of Computer Science, 1984  

[5] Pierce, Benjamin C. Types and Programming Languages. MIT Press, 2002  

[6] Appel, Andrew W., et al. “A Lexical Analyzer Generator for Standard ML.” A Lexical Analyzer Generator for
Standard ML. Version 1.6.0, October 1994, Princeton University, Oct. 1994, www.smlnj.org/doc/ML- Lex/
manual.html.  

[7] Tarditi, David R., and Andrew W. Appel. “ML-Yacc User’s Manual Version 2.3.” Princeton University, The
Trustees of Princeton University, 6 Oct. 1994, www.cs.princeton.edu/˜appel/modern/ml/ml-yacc/manual.html

QUESTIONS?

